科数网
题号:4023    题型:单选题    来源:2022年余炳森考研数学模拟考试(数学二)
设函数 $f(x)$ 连续, 则下列结论不成立的是
$\text{A.}$ $\int_0^\pi f(\sin x) \mathrm{d} x=2 \int_0^{\frac{\pi}{2}} f(\sin x) \mathrm{d} x$ $\text{B.}$ $\int_0^\pi x f(\sin x) \mathrm{d} x=\pi \int_0^{\frac{\pi}{2}} f(\sin x) \mathrm{d} x$ $\text{C.}$ $\int_{-1}^1 f(x) \mathrm{d} x=\int_0^1[f(x)+f(-x)] \mathrm{d} x$ $\text{D.}$ $\int_{-1}^1 x f(x) \mathrm{d} x=\int_0^1 x[f(x)+f(-x)] \mathrm{d} x$
答案:

解析:

答案与解析:
答案仅限会员可见 微信内自动登录手机登录微信扫码注册登录 点击我要 开通VIP