科数网
题号:3922    题型:解答题    来源:2022年西藏中考数学真题答案
在平面直角坐标系中, 抛物线 $y=-\frac{1}{2} x^2+(m-1) x+2 m$ 与 $x$ 轴交于 $A, B(4,0)$ 两点, 与 $y$ 轴交于点 $C$, 点 $P$ 是抛物线 在第一象限内的一个动点.
(1) 求抛物线的解析式, 并直接写出点 $\mathrm{A}, \mathrm{C}$ 的坐标;
(2) 如图甲, 点 $\mathrm{M}$ 是直线 $\mathrm{BC}$ 上的一个动点, 连接 $\mathrm{AM}, \mathrm{OM}$, 是否存在点 $\mathrm{M}$ 使 $\mathrm{AM}+\mathrm{OM}$ 最小, 若存在, 请求出点 $\mathrm{M}$ 的坐标, 若 不存在, 请说明理由;
(3) 如图乙, 过点 $P$ 作 $P F \perp B C$, 垂足为 $F$, 过点 $C$ 作 $C D \perp B C$, 交 $\mathrm{x}$ 轴于点 $\mathrm{D}$, 连接 $\mathrm{DP}$ 交 $\mathrm{BC}$ 于点 $\mathrm{E}$, 连接 $C P$. 设 $\triangle \mathrm{PEF}$ 的面积为 $S_1, \triangle P E C$ 的面积为 $S_2$, 是否存在点 $P$, 使得 $\frac{S_1}{S_2}$ 最大, 若存在, 请求出点 $P$ 的坐标, 若不存在, 请说明理由.
答案:

解析:

答案与解析:
答案仅限会员可见 微信内自动登录手机登录微信扫码注册登录 点击我要 开通VIP