设 $A, B$ 为 $n$ 阶可逆矩阵, $E$ 为 $n$ 阶单位矩阵, $M *$ 为矩阵 $M$ 的伴随
矩阵, 则 $\left(\begin{array}{ll}A & E \\ 0 & B\end{array}\right)^{*}= $
$ \text{A.} $ $\left(\begin{array}{cc}|A| B^* & -B^* A^* \\ 0 & |B| A^*\end{array}\right)$
$ \text{B.} $ $\left(\begin{array}{cc}|B| A^* & -A^* B^* \\ 0 & |A| B^*\end{array}\right)$
$ \text{C.} $ $\left(\begin{array}{cc}|B| A^* & -B^* A^* \\ 0 & |A| B^*\end{array}\right)$
$ \text{D.} $ $\left(\begin{array}{cc}|A| B^* & -A^* B^* \\ 0 & |B| A^*\end{array}\right)$