科数网
数学题库
数学试卷
会员组卷
知识库
几何图库
新建试题
关于
初中版
试题篮
0
登录
注册/登录
手机版
返回
导出PDF
导出Word
在线讲解
加入试卷
题号:
3542
题型:
填空题
来源:
2021年武汉科技大学线性代数B期末考试
入库日期
2022/12/19 15:06:13
已知 4 阶矩阵 $A=\left(\alpha_1, \alpha_2, \alpha_3, \alpha_4\right), B=\left(\alpha_1+2 \alpha_2, \alpha_2+3 \alpha_3, \alpha_3+4 \alpha_4, \alpha_4+5 \alpha_1\right),|A|=3$, 则 $|B|=$
0
条评论
0
人点赞
收藏
7
次查看
分享
编辑此题
【答案】
$-357$
上一题
下一题
系统推荐
解答题 来源:2022年西安电子科技大学《线性代数》期末考试
设 $\mathbf{A}$ 为 $n$ 阶方阵, 满足 $\mathbf{A}^2+\mathbf{A}=\mathrm{O}$, 求 $(\mathbf{A}+2 \mathbf{E})^{-1}$, 并找出 $\mathbf{A}$ 的特征 值.
解答题 来源:2006年全国硕士研究生招生考试试题
将函数 $f(x)=\frac{x}{2+x-x^{2}}$ 展开成 $x$ 的幂级数.
单选题 来源:1990 年全国硕士研究生入学统一考试
已知 $f(x)$ 在 $x=0$ 的某个领域内连续, 且 $f(0)=0, \lim _{x \rightarrow 0} \frac{f(x)}{1-\cos x}=2$, 则在点 $x=0$ 处