已知 $\begin{aligned} \frac{x y}{x+y} & =\frac{1}{2} , \quad \frac{x z}{x+z}=\frac{1}{3} , \quad \frac{y z}{y+z}=\frac{1}{4}\end{aligned}$
求 $\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}=$
【答案】 本题主要考察学生整体的观察思维。
解:
$$
\begin{aligned}
& \frac{1}{x}+\frac{1}{y}+\frac{1}{z} \\
= & \frac{1}{2}\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{x}+\frac{1}{z}+\frac{1}{y} + \frac{1}{z}\right) \\
= & \frac{1}{2}\left(\frac{x+y}{x y}+\frac{x+z}{x z}+\frac{y+z}{y z}\right) \\
= & \frac{1}{2}(2+3+4) \\
= & \frac{1}{2} \times 9=4.5
\end{aligned}
$$