由方程 $x y z+\sqrt{x^2+y^2+z^2}=\sqrt{2}$ 所确定的函数 $z=z(x, y)$ 在点 $(1,0,1)$ 处的全微分 $\left.\mathrm{d} z\right|_{\text {(1.0.1) }}=$
$\text{A.}$ $-\mathrm{d} x-\sqrt{2} \mathrm{~d} y$.
$\text{B.}$ $-\mathrm{d} x+\sqrt{2} \mathrm{~d} y$.
$\text{C.}$ $\mathrm{d} x+\sqrt{2} \mathrm{~d} y$.
$\text{D.}$ $\mathrm{d} x-\sqrt{2} \mathrm{~d} y$.