设函数 $f(x)=\left\{\begin{array}{ll}\frac{2+\mathrm{e}^{\frac{1}{x}}}{1-\mathrm{e}^{\frac{3}{x}}}+\frac{\ln (1-a x)}{|x|}, & x \neq 0 \\ b, & x=0\end{array}\right.$ 在 $x=0$ 处连续, 则
$\text{A.}$ $a=1, b=-1$.
$\text{B.}$ $a=-1, b=1$.
$\text{C.}$ $a=1, b=1$.
$\text{D.}$ $a=-1, b=-1$.