设 $4 \times 4$ 矩阵 ${A}=\left({\alpha}, {\gamma}_{2}, {\gamma}_{3}, {\gamma}_{4}\right), {B}=\left({\beta}, {\gamma}_{2}, {\gamma}_{3}, {\gamma}_{4}\right)$, 其中 ${\alpha}, {\beta}, {\gamma}_{2}, {\gamma}_{3}, {\gamma}_{4}$ 均为 4 维列向量, 且已知行列式 $|{A}|=4,|{B}|=1$, 则行列式 $|{A}+{B}|=$
$\text{A.}$
$\text{B.}$
$\text{C.}$
$\text{D.}$