科数网
试题 ID 20585
【所属试卷】
2025年全国硕士研究生入学考试(数学一)第一轮模拟考试冲刺卷
在任意长为 $t$ 的时间内发生事件 $A$ 的次数 $N(t)$ 服从参数为 $\frac{1}{2} t$ 的泊松分布, 设 $T$ 为相邻两次事件 $A$ 之间的时间间隔.
(1) 求 $T$ 的概率密度函数;
(2) 求使 $E(|T-C|)$ 取得最小值的常数 $C$;
(3) 在 (2) 的基础上, 证明: $C$ 满足 $P\{T \leqslant C\}=P\{T \geqslant C\}=\frac{1}{2}$.
A
B
C
D
E
F
答案:
答案与解析仅限VIP可见
解析:
答案与解析仅限VIP可见
在任意长为 $t$ 的时间内发生事件 $A$ 的次数 $N(t)$ 服从参数为 $\frac{1}{2} t$ 的泊松分布, 设 $T$ 为相邻两次事件 $A$ 之间的时间间隔.
(1) 求 $T$ 的概率密度函数;
(2) 求使 $E(|T-C|)$ 取得最小值的常数 $C$;
(3) 在 (2) 的基础上, 证明: $C$ 满足 $P\{T \leqslant C\}=P\{T \geqslant C\}=\frac{1}{2}$.
答案
答案与解析仅限VIP可见
解析
答案与解析仅限VIP可见