科数网
题号:20429    题型:单选题    来源:考研数学微信公众号《李艳芳每日一题》试题节选(线性代数)
设 $A$ 是 3 阶矩阵, 0 是 $A$ 的单特征值, $\alpha$ 是满足 $A \alpha= 0$ 的非零向量. 若对满足 $\beta^{ T } \alpha=0$ 的 3维列向量 $\beta$ ,均有 $A ^2 \beta=\beta$ ,则()
$\text{A.}$ $A , A ^2$ 均能相似对角化. $\text{B.}$ $A$ 不能相似对角化, $A ^2$ 能相似对角化. $\text{C.}$ $A$ 能相似对角化, $A ^2$ 不能相似对角化. $\text{D.}$ $A , A ^2$ 均不能相似对角化.
答案:

解析:

答案与解析:
答案仅限会员可见 微信内自动登录手机登录微信扫码注册登录 点击我要 开通VIP