科数网
题号:20213    题型:填空题    来源:概率论与数理统计(参数估计)专项训练
设总体 $X$ 的概率密度为 $f(x)=\frac{1}{2 \theta} e ^{-\frac{|x|}{\theta}},-\infty < x < +\infty, \theta>0 . X_1, X_2, \cdots, X_n$ 是取自总体 $X$ 的样本. 则未知参数 $\theta$ 的矩估计量为
答案:

解析:

答案与解析:
答案仅限会员可见 微信内自动登录手机登录微信扫码注册登录 点击我要 开通VIP