科数网
题号:20034    题型:单选题    来源:安徽省九师联盟2025届高三核心模拟卷(上)数学(二)试题
设向量 $\vec{\alpha}, \vec{\beta}$ 的夹角为 $\theta$, 定义: $\vec{\alpha} \otimes \vec{\beta}=|\vec{\alpha} \| \vec{\beta}| \sin \theta$. 若平面内互不相等的两个非零向量 $\vec{a}, \vec{b}$ 满足: $|\vec{a}|=1, \vec{a}-\vec{b}$ 与 $\vec{b}$ 的夹角为 $\frac{5 \pi}{6}$, 则 $\vec{a} \otimes \vec{b}$ 的最大值为 ( )
$\text{A.}$ 2 $\text{B.}$ $1+\frac{\sqrt{3}}{2}$ $\text{C.}$ $\sqrt{3}$ $\text{D.}$ $\frac{3}{2}$
答案:

解析:

答案与解析:
答案仅限会员可见 微信内自动登录手机登录微信扫码注册登录 点击我要 开通VIP