科数网
题号:20006    题型:单选题    来源:概率论与数理统计基础训练(抽样与分布)
设 $X_1, X_2, \cdots, X_n$ 是来自正态总体 $N\left(\mu, \sigma^2\right)$ 的简单随机样本, $\bar{X}$ 是样本均值, 记

$$
\begin{array}{ll}
S_1^2=\frac{1}{n-1} \sum_{i=1}^n\left(X_i-\bar{X}\right)^2, & S_2^2=\frac{1}{n} \sum_{i=1}^n\left(X_i-\bar{X}\right)^2, \\
S_3^2=\frac{1}{n-1} \sum_{i=1}^n\left(X_i-\mu\right)^2, & S_k^2=\frac{1}{n} \sum_{i=1}^n\left(X_i-\mu\right)^2,
\end{array}
$$


则服从自由度为 $n-1$ 的 $t$ 分布的随机变量是
$\text{A.}$ $t=\frac{\bar{X}-\mu}{S_1 / \sqrt{n-1}}$. $\text{B.}$ $t=\frac{\bar{X}-\mu}{S_2 / \sqrt{n-1}}$. $\text{C.}$ $t=\frac{\bar{X}-\mu}{S_3 / \sqrt{n}}$. $\text{D.}$ $t=\frac{\bar{X}-\mu}{S_4 / \sqrt{n}}$.
答案:

解析:

答案与解析:
答案仅限会员可见 微信内自动登录手机登录微信扫码注册登录 点击我要 开通VIP