曲线 $\Gamma:\left\{\begin{array}{l}\frac{x^2}{16}+\frac{y^2}{4}-\frac{z^2}{5}=1 \\ x-2 z+3=0\end{array}\right.$, 在 $x O y$ 平面上的投影曲线的方程是
$\text{A.}$ $x^2+20 y^2-24 x-116=0$.
$\text{B.}$ $4 y^2+4 z^2-12 z-7=0$.
$\text{C.}$ $\left\{\begin{array}{l}x^2+20 y^2-24 x-116=0 \\ z=0\end{array}\right.$
$\text{D.}$ $\left\{\begin{array}{l}4 y^2+4 z^2-12 z-7=0 \\ x=0\end{array}\right.$