将函数 $f(x)=8 \sin x$ 图象向右平移 $\frac{\pi}{8}$ 后, 再将所得图象上各点横坐标扩大为原来的 4 倍, 得到 $g(x)$ 的图象, 若方程 $g(x)=4$ 在 $[0,8 \pi]$ 内有两不等实根 $\alpha, \beta$, 则 $\cos \left(\alpha+\beta+\frac{\pi}{6}\right)=(\quad)$
$\text{A.}$ $-\frac{\sqrt{3}}{2}$
$\text{B.}$ $\frac{\sqrt{3}}{2}$
$\text{C.}$ -1
$\text{D.}$ $-\frac{1}{2}$