设 $A, B$ 为 $n$ 阶可逆矩阵, $E$ 为 $n$ 阶单位矩阵, $M^*$ 为 $M$ 的伴随矩阵,则 $\left(\begin{array}{ll}A & E \\ O & B\end{array}\right)^*=(\quad)$
$\text{A.}$ $\left(\begin{array}{cc}|A| B^* & -B^* A^* \\ O & |B| A^*\end{array}\right)$
$\text{B.}$ $\left(\begin{array}{cc}|A| B^* & -A^* B^* \\ O & |B| A^*\end{array}\right)$
$\text{C.}$ $\left(\begin{array}{cc}|B| A^* & -B^* A^* \\ O & |A| B^*\end{array}\right)$
$\text{D.}$ $\left(\begin{array}{cc}|B| A^* & -A^* B^* \\ O & |\boldsymbol{A}| B^*\end{array}\right)$