已知 $\left\{x_n\right\},\left\{y_n\right\}$ 满足:
$$
x_1=y_1=\frac{1}{2}, x_{n+1}=\sin x_n, y_{n+1}=y_n^2(n=1,2, \cdots)
$$
则当 $n \rightarrow \infty$ 时,()
$\text{A.}$ $x_n$ 是 $y_n$ 的高阶无穷小
$\text{B.}$ $y_n$ 是 $x_n$ 的高阶无穷小
$\text{C.}$ $x_n$ 与 $y_n$ 是等价无穷小
$\text{D.}$ $x_n$ 与 $y_n$ 是同阶但不等价的无穷小