已知函数 $u(x, y)$ 满足
$$
2 \frac{\partial^2 u}{\partial x^2}-2 \frac{\partial^2 u}{\partial y^2}+3 \frac{\partial u}{\partial x}+3 \frac{\partial u}{\partial y}=0 ,
$$
求 $a, b$ 的值,使得在变换 $u(x, y)=v(x, y) e^{a x+b y}$ 下,上述等式可以化为 $v(x, y)$ 不含一阶偏导数的等式.
$\text{A.}$
$\text{B.}$
$\text{C.}$
$\text{D.}$