设总体 $X$ 的概率密度为
$$
f\left(x, \sigma^2\right)= \begin{cases}\frac{A}{\sigma} e^{-\frac{(x-\mu)^2}{2 \sigma^2}} & , x \geq \mu, \\ 0, & x < \mu\end{cases}
$$
其中 $\mu$ 是已知参数, $\sigma>0$ 是未知参数, $A$ 是常数, $X_1, X_2, \cdots, X_n$ 是来自总体 $X$ 的简单随机样本.
(1) 求 $\boldsymbol{A}$ ;
(2) 求 $\sigma^2$ 的最大似然估计量.
$\text{A.}$
$\text{B.}$
$\text{C.}$
$\text{D.}$