\begin{aligned} I &=\iint_{\Sigma} \frac{x \mathrm{~d} y \mathrm{~d} z+y \mathrm{~d} z \mathrm{~d} x+z \mathrm{~d} x \mathrm{~d} y}{\left(x^{2}+y^{2}+z^{2}\right)^{\frac{3}{2}}} \\ &=\iint_{\Sigma-\Sigma_{1}} \frac{x \mathrm{~d} y \mathrm{~d} z+y \mathrm{~d} z \mathrm{~d} x+z \mathrm{~d} x \mathrm{~d} y}{\left(x^{2}+y^{2}+z^{2}\right)^{\frac{3}{2}}}+\iint_{\Sigma_{1}} \frac{x \mathrm{~d} y \mathrm{~d} z+y \mathrm{~d} z \mathrm{~d} x+z \mathrm{~d} x \mathrm{~d} y}{\left(x^{2}+y^{2}+z^{2}\right)^{\frac{3}{2}}} . \end{aligned}

\begin{aligned} &\iint_{\Sigma-\Sigma_{1}} \frac{x \mathrm{~d} y \mathrm{~d} z+y \mathrm{~d} z \mathrm{~d} x+z \mathrm{~d} x \mathrm{~d} y}{\left(x^{2}+y^{2}+z^{2}\right)^{\frac{3}{2}}}=\iint_{\Omega^{2}} 0 \mathrm{~d} x \mathrm{~d} y \mathrm{~d} z=0, \\ &\iint_{\Sigma_{1}} \frac{x \mathrm{~d} y \mathrm{~d} z+y \mathrm{~d} z \mathrm{~d} x+z \mathrm{~d} x \mathrm{~d} y}{\left(x^{2}+y^{2}+z^{2}\right)^{\frac{3}{2}}}=\iint_{\Sigma_{1}} x \mathrm{~d} y \mathrm{~d} z+y \mathrm{~d} z \mathrm{~d} x+z \mathrm{~d} x \mathrm{~d} y=\int_{x^{2}+y^{2}+z^{2} \leqslant 1} 3 \mathrm{~d} x \mathrm{~d} y \mathrm{~d} z=4 \pi, \end{aligned}

①因本站题量较多，无法仔细核对每一个试题，如果试题有误,请点击 编辑进行更正。
②如果您有更好的解答，可以点击 我要评论进行评论。
③如果您想挑战您的朋友，点击 我要分享 下载题目图片发给好友。