设整数 $n \geq 3$. 设 $\frac{1}{2} n(n-1)$ 个非负实数 $a_{i, j}(1 \leq i < j \leq n)$ 满足对任意 $1 \leq i < j < k \leq n$, 均有 $a_{i, j}+a_{j, k} \leq a_{i, k}$. 求证:
$$
\left[\frac{n^2}{4}\right] \sum_{1 \leq i < j \leq n} a_{i, j}^4 \geq\left(\sum_{1 \leq i < j \leq n} a_{i, j}^2\right)^2 .
$$
$\text{A.}$
$\text{B.}$
$\text{C.}$
$\text{D.}$