抛物线 $y=-x^2+k x+k-\frac{5}{4}$ 与 $x$ 轴的一个交点为 $A(m, 0)$, 若 $-2 \leqslant m \leqslant 1$, 则实数 $k$ 的取值范围是
$\text{A.}$ $-\frac{21}{4} \leqslant k \leqslant 1$
$\text{B.}$ $k \leqslant-\frac{21}{4}$ 或 $k \geqslant 1$
$\text{C.}$ $-5 \leqslant k \leqslant \frac{9}{8}$
$\text{D.}$ $k \leqslant-5$ 或 $k \geqslant \frac{9}{8}$