科数网
试题 ID 15993
【所属试卷】
复旦大学数学科学院2015-2016年《高等数学》第一学期期末考试试卷A卷
证明: $\int_0^1\left(1+\sin \frac{\pi}{2} x\right)^n \mathrm{~d} x>\frac{2^{n+1}-1}{n+1} \quad(n=1,2, \cdots)$;
(2) 求极限 $\lim _{n \rightarrow \infty}\left[\int_0^1\left(1+\sin \frac{\pi}{2} x\right)^n \mathrm{~d} x\right]^{\frac{1}{n}}$ 。
A
B
C
D
E
F
答案:
答案与解析仅限VIP可见
解析:
答案与解析仅限VIP可见
证明: $\int_0^1\left(1+\sin \frac{\pi}{2} x\right)^n \mathrm{~d} x>\frac{2^{n+1}-1}{n+1} \quad(n=1,2, \cdots)$;
(2) 求极限 $\lim _{n \rightarrow \infty}\left[\int_0^1\left(1+\sin \frac{\pi}{2} x\right)^n \mathrm{~d} x\right]^{\frac{1}{n}}$ 。
答案
答案与解析仅限VIP可见
解析
答案与解析仅限VIP可见