科数网
题号:15889    题型:解答题    来源:2007年全国硕士研究生招生统一考试数学试题及详细参考解答(数二)
设 3 阶对称矩阵 $A$ 的特征值 $\lambda_1=1, \lambda_2=-2, \lambda_3=-2$ ,且 $\alpha_1=(1,-1,1)^T$ 是 $A$ 的属于 $\lambda_1$ 的一个特征向量,记
$$
B=A^5-4 A^3+E,
$$

其中 $E$ 为 3 阶单位矩阵.
(1) 验证 $\alpha_1$ 是矩阵 $B$ 的特征向量,并求 $B$ 的全部特征值与特征向量;
(2) 求矩阵 $\boldsymbol{B}$.
答案:

解析:

答案与解析:
答案仅限会员可见 微信内自动登录手机登录微信扫码注册登录 点击我要 开通VIP