设数列 $\left\{x_n\right\}$ 满足
$$
0 < x_1 < \pi, x_{x+1}=\sin x_n(n=1,2, \cdots) \text {. }
$$
(1) 证明 $\lim _{n \rightarrow \infty} x_n$ 存在,并求极限.
(2) 计算 $\lim _{n \rightarrow \infty}\left(\frac{x_{n+1}}{x_n}\right)^{\frac{1}{x_n^2}}$.
$\text{A.}$
$\text{B.}$
$\text{C.}$
$\text{D.}$