设随机变量 $X$ 服从正态分布 $N\left(\mu_1, \sigma_1^2\right) , Y$ 服从正态分布 $N\left(\mu_2, \sigma_2^2\right)$ ,且 $P\left\{\left|X-\mu_1\right| < 1\right\}>P\left\{\left|Y-\mu_2\right| < 1\right\}$,则必有
$\text{A.}$ $\sigma_1 < \sigma_2$
$\text{B.}$ $\sigma_1>\sigma_2$
$\text{C.}$ $\mu_1 < \mu_2$
$\text{D.}$ $\mu_1>\mu_2$