科数网
题号:15738    题型:解答题    来源:2005年全国硕士研究生招生统一考试数学试题及详细参考解答(数二)
已知函数 $z=f(x, y)$ 的全微分 $\mathrm{d} z=2 x \mathrm{~d} x-2 y \mathrm{~d} y$ ,并且 $f(1,1)=2$ 求 $f(x, y)$ 在椭圆域
$$
D=\left\{(x, y) \left\lvert\, x^2+\frac{y^2}{4} \leq 1\right.\right\}
$$

上的最大值和最小值.
答案:

解析:

答案与解析:
答案仅限会员可见 微信内自动登录手机登录微信扫码注册登录 点击我要 开通VIP