科数网
题号:15684    题型:解答题    来源:2004年全国硕士研究生招生统一考试数学试题及详细参考解答(数三)
设 $F(x)=\left\{\begin{array}{l}e^{2 x}, x \leq 0 \\ e^{-2 x}, x>0\end{array}\right.$ ,S 表示夹在 $x$ 轴与曲线 $y=F(x)$ 之间的面积. 对任何 $t>0, S_1(t)$ 表示矩形 $-t \leq x \leq t, 0 \leq y \leq F(t)$ 的面积. 求
(1) $S(t)=S-S_1(t)$ 的表达式;
(2) $S(t)$ 的最小值.
答案:

解析:

答案与解析:
答案仅限会员可见 微信内自动登录手机登录微信扫码注册登录 点击我要 开通VIP