设函数 $f(x)=\left\{\begin{array}{cl}\frac{\ln \left(1+a x^3\right)}{x-\arcsin x} & x < 0 \\ 6 & x=0 \\ \frac{e^{a x}+x^2-a x-1}{x \sin (x / 4)} & x>0\end{array}\right.$ ,问 $a$ 为何值时, $f(x)$ 在 $x=0$ 处连续; $a$ 为何值时, $x=0$ 是 $f(x)$的可去间断点?
$\text{A.}$
$\text{B.}$
$\text{C.}$
$\text{D.}$