设总体 $X$ 的概率密度为
$$
f(x)=\left\{\begin{array}{cc}
2 e^{-2(x-\theta)} & x>\theta \\
0 & x \leq 0
\end{array}\right.
$$
其中 $\theta>0$ 是未知参数. 从总体 $X$ 中抽取简单随机样本 $X_1, X_2, \cdots, X_n$ ,记
$$
\hat{\boldsymbol{\theta}}=\min \left(\boldsymbol{X}_1, \boldsymbol{X}_2, \cdots, \boldsymbol{X}_n\right) .
$$
(1) 求总体 $X$ 的分布函数 $F(x)$.
(2) 求统计量 $\hat{\theta}$ 的分布函数 $F_{\hat{\theta}}(x)$.
(3) 如果用 $\hat{\boldsymbol{\theta}}$ 作为 $\boldsymbol{\theta}$ 的估计量,讨论它是否具有无偏性.
$\text{A.}$
$\text{B.}$
$\text{C.}$
$\text{D.}$