科数网
试题 ID 14625
【所属试卷】
2024年丘成桐大学生数学竞赛(几何与拓扑类)-无答案
Let $M$ be a closed, simply connected 6-dimensional manifol d. Suppose $H_2(M)=\mathbb{Z}_2$. Prove that the Euler characteristic $\chi(M) \neq-1$.
A
B
C
D
E
F
答案:
答案与解析仅限VIP可见
解析:
答案与解析仅限VIP可见
Let $M$ be a closed, simply connected 6-dimensional manifol d. Suppose $H_2(M)=\mathbb{Z}_2$. Prove that the Euler characteristic $\chi(M) \neq-1$.
答案
答案与解析仅限VIP可见
解析
答案与解析仅限VIP可见