科数网
题号:13498    题型:解答题    来源:湖北省武汉市2024届高中毕业生四月调研考试数学试卷
已知抛物线 $E: y=x^2$, 过点 $T(1,2)$ 的直线与抛物线 $E$ 交于 $A, B$ 两点, 设抛物线 $E$ 在点 $A, B$ 处的切线分别为 $l_1$ 和 $l_2$, 已知 $l_1$ 与 $x$ 轴交于点 $M, l_2$ 与 $x$ 轴交于点 $N$, 设 $l_1$ 与 $l_2$ 的交点为 $P$.
(1) 证明: 点 $P$ 在定直线上;
(2)若 $\triangle P M N$ 面积为 $\sqrt{2}$, 求点 $P$ 的坐标;
(3) 若 $P, M, N, T$ 四点共圆, 求点 $P$ 的坐标.
答案:

解析:

答案与解析:
答案仅限会员可见 微信内自动登录手机登录微信扫码注册登录 点击我要 开通VIP