设双曲线 $\Gamma: \frac{x^2}{a^2}-\frac{y^2}{b^2}=1(a>0, b>0)$ 的左、右焦点分别为 $F_1$ 和 $F_2$, 圆 $O$ 以 $\Gamma$ 的实轴为直径, 过点 $F_1$ 作圆 $O$ 的切线 $l, l$ 与 $\Gamma$ 的两支分别交于 $A, B$ 两点, 且 $\cos \angle F_1 B F_2=\frac{3}{5}$,则 $\Gamma$ 的离心率的值为
$\text{A.}$
$\text{B.}$
$\text{C.}$
$\text{D.}$