$F(x)=\left\{\begin{array}{ll}1-\mathrm{e}^{-\frac{x^2}{\theta}}, & x \geqslant 0, \\ 0, & x < 0\end{array}\right.$ (其中 $\theta>0$ 为未知参数), $X_1, X_2, \cdots, X_n$ 为来自总体 $X$ 的简单随机样本.
(I) 求参数 $\theta$ 的矩估计量;
(II) 求参数 $\theta$ 的最大似然估计量.
$\text{A.}$
$\text{B.}$
$\text{C.}$
$\text{D.}$