科数网
题号:10637    题型:单选题    来源:汤家凤绝对考场最后八套题(数学三)2021版
设总体 $X \sim N\left(\mu, \sigma^2\right), X_1, X_2, \cdots, X_n$ 为来自总体 $X$ 的简单随机样本, $\bar{X}=\frac{1}{n} \sum_{i=1}^n X_i$, 已知 $k \sum_{i=1}^n\left(X_i-\bar{X}\right)^2$ 为 $\sigma^2$ 的无偏估计量, 则 $k=$.
$\text{A.}$ $\frac{1}{n}$ $\text{B.}$ $\frac{1}{2 n}$ $\text{C.}$ $\frac{1}{2(n-1)}$ $\text{D.}$ $\frac{1}{n-1}$
答案:

解析:

答案与解析:
答案仅限会员可见 微信内自动登录手机登录微信扫码注册登录 点击我要 开通VIP