单选题 (共 3 题 ),每题只有一个选项正确
设 $f(x)$ 是连续函数, 且 $f(x)=x+2 \int_0^1 f(t) d t$, 则 $f(x)= $
$\text{A.}$ $\frac{x^2}{2}$
$\text{B.}$ $\frac{x^2}{2}+2$
$\text{C.}$ $x-1$
$\text{D.}$ $x+2$.
设 $a$ 为正实数, 令 $I_a=\int_{\frac{1}{a}}^a \frac{\ln x}{1+x^2} d x$, 则
$\text{A.}$ $I_a=0$.
$\text{B.}$ $I_a=1$.
$\text{C.}$ $I_a=-1$.
$\text{D.}$ $I_a=2$.
$\text{E.}$ $I_a$ 的值与 $a$ 有关.
已知 $\int f(x) \mathrm{d} x=x^3+C$ ,则 $\int x f\left(1-x^2\right) \mathrm{d} x=()$ .
$\text{A.}$ $-2\left(1-x^2\right)^3+C$
$\text{B.}$ $2\left(1-x^2\right)^3+C$
$\text{C.}$ $-\frac{1}{2}\left(1-x^2\right)^3+C$
$\text{D.}$ $\frac{1}{2}\left(1-x^2\right)^3+C$