练习题

数 学



填空题 (共 6 题 ),请把答案直接填写在答题纸上
$\lim _{n \rightarrow+\infty} \sum_{k=1}^n \frac{\sqrt{k}}{n \sqrt{n+\frac{1}{k}}}=$

已知 $\lim _{x \rightarrow \infty}\left(\frac{x^2}{x+1}-a x-b\right)=0$, 其中 $a, b$ 是常数, 则 $a=$ $\qquad$ , $b=$

设 $\lim _{x \rightarrow 0} \dfrac{\ln \left(1+\frac{f(x)}{\sin 2 x}\right)}{e^x-1}=3$, 求 $\lim _{x \rightarrow 0} \frac{f(x)}{x^2}$.

$\lim _{x \rightarrow 0^{+}}\left(\frac{1}{x}\right)^{\tan x}$.

$\lim _{x \rightarrow 0} \frac{1-\cos x-\sin x+\ln (1+x)}{x \sin ^2 x}$ 。

已知函数 $f(x)$ 有任意阶导数,满足 $f^{\prime \prime}(x)-2 f(x)=x^{2021} \cos x$ ,其中 $f(0)=1, f^{\prime}(0)=$ 0 ,则 $f^{(2023)}(0)=$

非会员每天可以查看15道试题。 开通会员,海量试题无限制查看。

  • 无限看试题

  • 下载试题

  • 组卷
开通会员

试卷二维码

分享此二维码到群,让更多朋友参与

试卷白板

试卷白板提供了一个简单的触摸书写板,可供老师上课、或者视频直播时, 直接利用白板给学生讲解试题,如有意见,欢迎反馈。

他的试卷