填空题 (共 3 题 ),请把答案直接填写在答题纸上
$\lim _{n \rightarrow+\infty} \sum_{k=1}^n \frac{\sqrt{k}}{n \sqrt{n+\frac{1}{k}}}=$
已知 $\lim _{x \rightarrow \infty}\left(\frac{x^2}{x+1}-a x-b\right)=0$, 其中 $a, b$ 是常数, 则 $a=$ $\qquad$ , $b=$
设 $\lim _{x \rightarrow 0} \dfrac{\ln \left(1+\frac{f(x)}{\sin 2 x}\right)}{e^x-1}=3$, 求 $\lim _{x \rightarrow 0} \frac{f(x)}{x^2}$.