填空题 (共 3 题 ),请把答案直接填写在答题纸上
计算 $$
\left|\begin{array}{cccc}
2 & 1 & 0 & -1 \\
-1 & 2 & -5 & 3 \\
3 & 0 & a & b \\
1 & -3 & 5 & 0
\end{array}\right|-\left|\begin{array}{cccc}
2 & 1 & 0 & -1 \\
-1 & 2 & -5 & 3 \\
3 & 0 & a & b \\
1 & -1 & 1 & 0
\end{array}\right|=
$$
设 $A =\left[ a _1, a _2, \alpha _3\right]$ 是3阶矩阵,且 $| A |=5$ ,若
$$
B=\left[\alpha_1-3 \alpha_2+2 \alpha_3, \alpha_2-2 \alpha_3, 2 \alpha_2+\alpha_3\right],
$$
则 $| B |=$
设 $A =\left[\begin{array}{lllll}0 & 0 & 0 & 5 & 6 \\ 0 & 0 & 0 & 7 & 8 \\ 1 & 2 & 3 & 0 & 0 \\ 0 & 1 & 4 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0\end{array}\right]$ ,则 $| A |$ 中所有元素的代数余子式之和为