阶段性水平测试

高等数学



单选题 (共 3 题 ),每题只有一个选项正确
极限 $\lim _{x \rightarrow 0} \frac{\int_0^x t \ln (1+t \sin t) d t}{1-\cos x^2}=(\quad)$ 。
$\text{A.}$ $\frac{1}{4}$ $\text{B.}$ $\frac{1}{2}$ $\text{C.}$ 1 $\text{D.}$ 2

曲线 $y=\frac{1}{x}+\ln \left(1+e^x\right)$ 渐近线的条数为()
$\text{A.}$ 0 $\text{B.}$ 1 $\text{C.}$ 2 $\text{D.}$ 3

下列命题中正确的是()
$\text{A.}$ 若函数 $f(x)$ 在 $x=x_0$ 处不可导, 则 $f(x)$ 在 $x=x_0$ 处不连续. $\text{B.}$ 若函数 $f(x)$ 在 $x=x_0$ 处不连续, 则 $f_{-}^{\prime}\left(x_0\right), f_{+}^{\prime}\left(x_0\right)$ 中至少有一个不存在. $\text{C.}$ 若 $f_{-}^{\prime}\left(x_0\right), f_{+}^{\prime}\left(x_0\right)$ 存在, 则函数 $f(x)$ 在 $x=x_0$ 处可导. $\text{D.}$ 若函数 $f(x)$ 在 $x=x_0$ 处连续, 则 $f(x)$ 在 $x=x_0$ 处左可导并且右可导.

非会员每天可以查看15道试题。 开通会员,海量试题无限制查看。

  • 无限看试题

  • 下载试题

  • 组卷
开通会员

试卷二维码

分享此二维码到群,让更多朋友参与

试卷白板

试卷白板提供了一个简单的触摸书写板,可供老师上课、或者视频直播时, 直接利用白板给学生讲解试题,如有意见,欢迎反馈。