试卷试卷具体名称

数学

本试卷总分150分,考试时间120分钟。
注意事项:
答卷前, 考生务必将自己的姓名、准考证号填写在答题卡上。
回答选择题时, 选出每小题答案后, 用铅笔把答题卡上对应题目的答案标号涂黑,写在本试卷上无效。
考试结束后, 将本试卷和答题卡一并交回。
学校:_______________ 姓名:_____________ 班级:_______________ 学号:_______________


单选题 (共 4 题 ),每题只有一个选项正确
设 $f(x)=\left\{\begin{array}{cc}x^2, & x \leqslant 0, \\ x^2+x, & x>0 .\end{array}\right.$ 则( )
$\text{A.}$ $f(-x)=\left\{\begin{array}{cc}-x^2, & x \leqslant 0, \\ -\left(x^2+x\right), & x>0 .\end{array}\right.$ $\text{B.}$ $f(-x)=\left\{\begin{array}{cc}-\left(x^2+x\right), & x < 0, \\ -x^2, & x \geqslant 0 .\end{array}\right.$ $\text{C.}$ $f(-x)=\left\{\begin{array}{cc}x^2, & x \leqslant 0, \\ x^2-x, & x>0 .\end{array}\right.$ $\text{D.}$ $f(-x)=\left\{\begin{array}{cc}x^2-x, & x < 0, \\ x^2, & x \geqslant 0 .\end{array}\right.$

设函数 $f(x)=x \cdot \tan x \cdot e^{\sin x}$ ,则 $f(x)$ 是( )

$\text{A.}$ 偶函数 $\text{B.}$ 无界函数 $\text{C.}$ 周期函数 $\text{D.}$ 单调函数

极限 $\lim _{x \rightarrow 0} \frac{[\sin x-\sin (\sin x)] \sin x}{x^4}$ 为( )。
$\text{A.}$ $\frac{1}{3}$ $\text{B.}$ $-\frac{1}{3}$ $\text{C.}$ $\frac{1}{6}$ $\text{D.}$ $-\frac{1}{6}$

设函数 $u(x, y)$ 在有界闭区域 $D$ 上连续,在 $D$ 的内部具有 2 阶连续偏导数,且满足 $\frac{\partial^2 u}{\partial x \partial y} \neq 0$ 及 $\frac{\partial^2 u}{\partial x^2}+\frac{\partial^2 u}{\partial y^2}=0$ ,则( )。
$\text{A.}$ $u(x, y)$ 的最大值和最小值都在 $D$ 的边界上取到 $\text{B.}$ $u(x, y)$ 的最大值和最小值都在 $D$ 的内部取到 $\text{C.}$ $u(x, y)$ 的最大值在 $D$ 的内部取到,最小值在 $D$ 的边界上取到 $\text{D.}$ $u(x, y)$ 的最小值在 $D$ 的内部取到,最大值在 $D$ 的边界上取到

填空题 (共 2 题 ),请把答案直接填写在答题纸上
$\lim _{x \rightarrow 0} \frac{x \ln (1+x)}{1-\cos x}$

$\lim _{x \rightarrow 0} \frac{ e ^{x^2}-1}{x \ln (1+2 x)}$

非会员每天可以查看15道试题。 开通会员,海量试题无限制查看。

  • 无限看试题

  • 下载试题

  • 组卷
开通会员

试卷二维码

分享此二维码到群,让更多朋友参与

试卷白板

试卷白板提供了一个简单的触摸书写板,可供老师上课、或者视频直播时, 直接利用白板给学生讲解试题,如有意见,欢迎反馈。

他的试卷