填空题 (共 23 题 ),请把答案直接填写在答题纸上
求极限 $\lim _{x \rightarrow 0} \frac{\ln (1+x)}{x}$;
求极限 $\lim _{x \rightarrow 0} \frac{ e ^x- e ^{-x}}{\sin x}$;
求极限 $\lim _{x \rightarrow 0} \frac{\tan x-x}{x-\sin x}$;
求极限 $\lim _{x \rightarrow \pi} \frac{\sin 3 x}{\tan 5 x}$;
求极限 $\lim _{x \rightarrow \frac{\pi}{2}} \frac{\ln \sin x}{(\pi-2 x)^2}$;
$\lim _{x \rightarrow a} \frac{x^m-a^m}{x^n-a^n} \quad(a \neq 0)$;
求极限 $\lim _{x \rightarrow 0^{+}} \frac{\ln \tan 7 x}{\ln \tan 2 x}$;
求极限 $\lim _{x \rightarrow \frac{\pi}{2}} \frac{\tan x}{\tan 3 x}$;
求极限 $\lim _{x \rightarrow+\infty} \frac{\ln \left(1+\frac{1}{x}\right)}{\operatorname{arccot} x}$;
$\lim _{x \rightarrow 0} \frac{\ln \left(1+x^2\right)}{\sec x-\cos x}$;
$\lim _{x \rightarrow 0} x \cot 2 x$;
$\lim _{x \rightarrow 0} x^2 e ^{\frac{1}{x^2}}$;
$\lim _{x \rightarrow 1}\left(\frac{2}{x^2-1}-\frac{1}{x-1}\right)$;
$\lim _{x \rightarrow 0}\left( e ^x+x\right)^{\frac{1}{x}}$;
$\lim _{x \rightarrow 0^{+}} x^{\sin x}$;
$\lim _{x \rightarrow 0^{+}}\left(\frac{1}{x}\right)^{\tan x}$.
求极限 $\lim _{x \rightarrow 0} \frac{x-\sin x}{x^3}$;
$\lim _{n \rightarrow \infty}\left(\frac{n+1}{n-2}\right)^n$
$\lim _{x \rightarrow 0+} \frac{\int_0^{\sqrt{x}} \ln \left(1+t^4\right) d t}{x^{\frac{5}{2}}}$;
设 $\lim _{x \rightarrow 0} \frac{\sin 6 x+x f(x)}{x^3}=0$, 则 $\lim _{x \rightarrow 0} \frac{6+f(x)}{x^2}=$
$\lim _{n \rightarrow \infty} \sqrt[n]{2^n+3^n}=$
$\lim _{x \rightarrow 0^{+}} \frac{x^x-1}{\ln x \cdot \ln (1-x)}=$
求极限$ \lim _{x \rightarrow 0}\left[\frac{1}{\ln \left(1+\sin ^2 x\right)}-\frac{1}{\ln \left(1+x^2\right)}\right]$
解答题 (共 5 题 ),解答过程应写出必要的文字说明、证明过程或演算步骤
设 $a>b>0$, 证明:
$$
\frac{a-b}{a} < \ln \frac{a}{b} < \frac{a-b}{b} .
$$
求极限 $\lim _{x \rightarrow \infty}\left[x-x^2 \ln \left(1+\frac{1}{x}\right)\right] .$
求极限$\lim _{x \rightarrow 0} \frac{1+\frac{1}{2} x^2-\sqrt{1+x^2}}{\left(\cos x-e^{x^2}\right) \sin x^2}$
$\lim _{x \rightarrow 0} \frac{x^2}{1-\sqrt{1+x^2}}$
$\lim _{x \rightarrow 0+} \frac{\int_0^{x^2} \ln \sqrt[3]{1+t} d t}{\left[\left(1+2 x^2\right)^x-1\right] \sin ^2 \sqrt{x}}$