第五章 二次型

高等代数二次型

本试卷总分150分,考试时间120分钟。
注意事项:
答卷前, 考生务必将自己的姓名、准考证号填写在答题卡上。
回答选择题时, 选出每小题答案后, 用铅笔把答题卡上对应题目的答案标号涂黑,写在本试卷上无效。
考试结束后, 将本试卷和答题卡一并交回。
学校:_______________ 姓名:_____________ 班级:_______________ 学号:_______________


一、单选题 (共 3 题,每小题 5 分,共 50 分,每题只有一个选项正确)
已知二次型 $f\left(x_1, x_2, x_3\right)=\sum_{i=1}^3\left(x_i-\bar{x}\right)^2$, 其中 $\bar{x}=\frac{x_1+x_2+x_3}{3}$, 则二次型的正惯性指数为
$\text{A.}$ 3 $\text{B.}$ 2 $\text{C.}$ 1 $\text{D.}$ 0

已知二次型 $f\left(x_1, x_2\right)=2 x_1^2+a x_2^2+4 x_1 x_2$ 对应的矩阵与 $\left(\begin{array}{ll}4 & b \\ 3 & 1\end{array}\right)$ 合同, 则
$\text{A.}$ $a>2, b=3$. $\text{B.}$ $a < 2, b=3$. $\text{C.}$ $a>2, b=\frac{2}{3}$. $\text{D.}$ $a < 2, b=\frac{2}{3}$.

设 $f(x)$ 和 $\varphi(x)$ 在 $(-\infty,+\infty)$ 内有定义, $f(x)$ 为连续函数,且 $f(x) \neq 0 , \varphi(x)$ 有间断点,则
$\text{A.}$ $\varphi[f(x)]$ 必有间断点 $\text{B.}$ $[\varphi(x)]^2$ 必有间断点 $\text{C.}$ $f[\varphi(x)]$ 必有间断点 $\text{D.}$ $\frac{\varphi(x)}{f(x)}$ 必有间断点

二、填空题 (共 1 题, 每小题 5 分,共 20 分, 请把答案直接填写在答题纸上)
设二次型 $f\left(x_1, x_2, x_3\right)=x_1{ }^2+3 x_3{ }^2-4 x_1 x_2+2 x_1 x_3-8 x_2 x_3$, 则二次型 $f$ 的矩阵是


三、解答题 ( 共 5 题,满分 80 分,解答过程应写出必要的文字说明、证明过程或演算步骤 )
实二次型 $f\left(x_1, x_2, x_3\right)=\left(x_1+2 x_2\right)^2+\left(2 x_2-x_3\right)^2$ $+\left(x_1+x_3\right)^2$ 的正惯性指数为



设实二次型 $f\left(x_1, x_2, x_3\right)=\left(x_1-x_2+x_3\right)^2+\left(x_2+x_3\right)^2+\left(x_1+a x_3\right)^2$, 其中 $a$ 是参数.
(I) 求 $f\left(x_1, x_2, x_3\right)=0$ 的解;
(II) 求 $f\left(x_1, x_2, x_3\right)$ 的规范形.



已知实二次型 $f\left(x_1, x_2, x_3\right)=a x_1{ }^2+a x_2{ }^2+a x_3{ }^2$
$+2 x_1 x_2+2 x_1 x_3+2 x_2 x_3$ 用正交替换 $X=T Y$ 化为标准形
$$
f\left(x_1, x_2, x_3\right)=b{y_2}^2+c y_3{ }^2,(b, c \neq 0) .
$$

求 $a, b, c$ 并写出正交替换及所化成的标准二次型.



设 $\boldsymbol{A}$ 为 3 阶实对称阵, $\boldsymbol{\xi}_1=(a,-2,1)^{\mathrm{T}}$ 是 $\boldsymbol{A x}=\mathbf{0}$ 的解, $\boldsymbol{\xi}_2=(a, a,-3)^{\mathrm{T}}$是 $(\boldsymbol{A}-\boldsymbol{E}) \boldsymbol{x}=\mathbf{0}$ 的解, 且 $\boldsymbol{B}=\left(\begin{array}{ccc}3 & 1 & 2 \\ 1 & a & -2 \\ 2 & -2 & 9\end{array}\right)$ 是正定矩阵.
(I) 求参数 $a$;
(II) 求正交变换 $\boldsymbol{x}=\boldsymbol{P} \boldsymbol{y}$, 将二次型 $f=\boldsymbol{x}^{\mathrm{T}} \boldsymbol{B} \boldsymbol{x}$ 化为标准形;
(III) 当 $\boldsymbol{x}^{\mathrm{T}} \boldsymbol{x}=2$ 时, 求 $f=\boldsymbol{x}^{\mathrm{T}} \boldsymbol{B} \boldsymbol{x}$ 的最大值.



已知二次型 $f\left(x_1, x_2, x_3\right)=\left|\begin{array}{cccc}0 & -x_1 & -x_2 & -x_3 \\ x_1 & a_{11} & a_{12} & a_{13} \\ x_2 & a_{21} & a_{22} & a_{23} \\ x_3 & a_{31} & a_{32} & a_{33}\end{array}\right|$, 实对称矩阵 $\boldsymbol{A}=\left(\begin{array}{ccc}a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33}\end{array}\right)$.
(1) 求二次型 $f\left(x_1, x_2, x_3\right)$ 的矩阵;
(2) 已知二次型 $f\left(x_1, x_2, x_3\right)$ 经正交变换化为标准形 $y_1^2+4 y_2^2+y_3^2$, 其中 $|\boldsymbol{A}|>0$, 矩阵 $\boldsymbol{A}$ 各行元素之和为 $a(a < 1)$, 矩阵 $\boldsymbol{B}$ 满足 $\left[\left(\frac{1}{2} \boldsymbol{A}\right)^*\right]^{-1} \boldsymbol{B A}=6 \boldsymbol{A} \boldsymbol{B}+12 \boldsymbol{E}$, 求可逆矩阵 $\boldsymbol{P}$ 和对角矩阵 $\boldsymbol{\Lambda}$, 使得 $\boldsymbol{P}^{\mathrm{T}} \boldsymbol{B P}=\boldsymbol{\Lambda}$.



非会员每天可以查看15道试题。 开通会员,海量试题无限制查看。

  • 无限看试题

  • 下载试题

  • 组卷
开通会员

试卷二维码

分享此二维码到群,让更多朋友参与

试卷白板

试卷白板提供了一个简单的触摸书写板,可供老师上课、或者视频直播时, 直接利用白板给学生讲解试题,如有意见,欢迎反馈。

他的试卷