中国人民大学《高等数学A》第一学期期末考试试卷



单选题 (共 6 题 ),每题只有一个选项正确
设函数 $f(x)$ 在 $(-\infty,+\infty)$ 内单调有界, $\left\{x_n\right\}$ 为数列, 下列命题正确的是
$\text{A.}$ 若 $\left\{x_n\right\}$ 收敛, 则 $\left\{f\left(x_n\right)\right\}$ 收敛 $\text{B.}$ 若 $\left\{x_n\right\}$ 单调, 则 $\left\{f\left(x_n\right)\right\}$ 收敛 $\text{C.}$ 若 $\left\{f\left(x_n\right)\right\}$ 收敛, 则 $\left\{x_n\right\}$ 收敛. $\text{D.}$ 若 $\left\{f\left(x_n\right)\right\}$ 单调, 则 $\left\{x_n\right\}$ 收敛.

函数 $f(x)=\lim _{n \rightarrow \infty} \frac{x^n+2}{x^n+1}$ 的间断点及类型是
$\text{A.}$ $x=1$ 是第一类间断点, $x=-1$ 是第二类间断点 $\text{B.}$ $x=1$ 是第二类间断点, $x=-1$ 是第一类间断点 $\text{C.}$ $x= \pm 1$ 均是第一类间断点 $\text{D.}$ $x= \pm 1$ 均是第二类间断点

当 $x \rightarrow 0^{+}$时, 与 $\sqrt{x}$ 等价的无穷小量是
$\text{A.}$ $1-\mathrm{e}^{\sqrt{x}}$. $\text{B.}$ $\sqrt{1+\sqrt{x}}-1$. $\text{C.}$ $\ln \frac{1+x}{1-\sqrt{x}}$. $\text{D.}$ $1-\cos \sqrt{x}$.

设函数 $f(x)$ 在 $x=0$ 处连续, 下列命题错误 的是
$\text{A.}$ 若 $\lim _{x \rightarrow 0} \frac{f(x)}{x}$ 存在, 则 $f(0)=0$. $\text{B.}$ 若 $\lim _{x \rightarrow 0} \frac{f(x)+f(-x)}{x}$ 存在, 则 $f(0)=0$. $\text{C.}$ 若 $\lim _{x \rightarrow 0} \frac{f(x)}{x}$ 存在, 则 $f^{\prime}(0)$ 存在. $\text{D.}$ 若 $\lim _{x \rightarrow 0} \frac{f(x)-f(-x)}{x}$ 存在, 则 $f^{\prime}(0)$ 存在.

曲线 $y=x \ln \left(\mathrm{e}+\frac{1}{x}\right) \quad(x>0)$ 的渐近线条数为
$\text{A.}$ 0 $\text{B.}$ 1 $\text{C.}$ 2 $\text{D.}$ 3

设 $F(x)=\int_x^{x+2 \pi} \mathrm{e}^{\sin t} \sin t \mathrm{~d} t$, 则 $F(x)$
$\text{A.}$ 为正常数. $\text{B.}$ 为负常数. $\text{C.}$ 恒为零. $\text{D.}$ 不为常数.

填空题 (共 4 题 ),请把答案直接填写在答题纸上
曲线 $\left\{\begin{array}{l}x=\arctan t \\ y=\ln \sqrt{1+t^2}\end{array}\right.$ 对应于 $t=1$ 处的法线方程为


曲线 $y=x \sin x+2 \cos x\left(-\frac{\pi}{2} < x < 2 \pi\right)$ 的拐点是


曲线 $y=\ln \cos x\left(0 \leq x \leq \frac{\pi}{6}\right)$ 的弧长为


$y=2^x$ 的麦克劳林公式中 $x^n$ 项的系数是


解答题 (共 6 题 ),解答过程应写出必要的文字说明、证明过程或演算步骤
已知 $\lim _{x \rightarrow 1} \frac{a x^2+x-3}{x-1}=b$, 求常数 $a, b$ 的值.



设 $f(x)$ 为连续函数, 且满足 $f(x)=x^2-x \cdot f(2)+2 \int_0^1 f(x) \mathrm{d} x$ ,求 $f(x)$.



求极限 $l=\lim _{n \rightarrow \infty} \sum_{i=0}^{n-1} \frac{1}{n+i}$.



计算定积分 $I=\int_0^1 x^3 \sqrt{1-x^2} \mathrm{~d} x$.



设函数 $f(x)=\left\{\begin{array}{cc}\lambda e^{-\lambda x}, & x>0, \\ 0, & x \leq 0\end{array}, \lambda>0\right.$, 求 $\int_{-\infty}^{+\infty} x f(x) \mathrm{d} x$.



求微分方程 $x y^{\prime}+y-\mathrm{e}^x=0, y(2)=1$ 的特解.



非会员每天可以查看15道试题。 开通会员,海量试题无限制查看。

  • 无限看试题

  • 下载试题

  • 组卷
开通会员

热点推荐

试卷二维码

分享此二维码到群,让更多朋友参与

试卷白板

试卷白板提供了一个简单的触摸书写板,可供老师上课、或者视频直播时, 直接利用白板给学生讲解试题,如有意见,欢迎反馈。