查看原题
设函数 $f(x)=a x^3-(a+1) x^2+x, g(x)=k x+m$, 其中 $a \geq 0, k 、 m \in \mathbf{R}$, 若对任意 $x \in[0,1]$ 均有 $f(x) \leq g(x)$, 则称函数 $y=g(x)$ 是函数 $y=f(x)$ 的 “控制函数” , 且对所有 的函数 $y=g(x)$ 取最小值定义为 $\bar{f}(x)$.
(1) 若 $a=2, g(x)=x$, 试问 $y=g(x)$ 是否为函数 $y=f(x)$ 的 “控制函数”;
(2) 若 $a=0$, 使得直线 $y=h(x)$ 是曲线 $y=f(x)$ 在 $x=\frac{1}{4}$ 处的切线.
证明: 函数 $y=h(x)$ 为函数 $y=f(x)$ 的 “控制函数” , 并求 $\bar{f}\left(\frac{1}{4}\right)$ 的值;
(3) 若曲线 $y=f(x)$ 在 $x=x_0, x_0 \in(0,1)$ 处的切线过点 $(1,0)$, 且 $c \in[0,1]$.
证明:当且仅当 $c=x_0$ 或 $c=1$ 时, $\bar{f}(c)=f(c)$.
                        
不再提醒