设 $A$ 为 3 阶矩阵, $P=\left(\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 1 & 0 & 1\end{array}\right)$ ,若
$P^T A P^2=\left(\begin{array}{ccc}a+2 c & 0 & c \\ 0 & b & 0 \\ 2 c & 0 & c\end{array}\right) ,$ 则 $A= $
A. $\left(\begin{array}{lll}c & 0 & 0 \\ 0 & a & 0 \\ 0 & 0 & b\end{array}\right)$
B. $\left(\begin{array}{lll}b & 0 & 0 \\ 0 & c & 0 \\ 0 & 0 & a\end{array}\right)$
C. $\left(\begin{array}{lll}a & 0 & 0 \\ 0 & b & 0 \\ 0 & 0 & c\end{array}\right)$
D. $\left(\begin{array}{lll}c & 0 & 0 \\ 0 & b & 0 \\ 0 & 0 & a\end{array}\right)$