设非负函数 $f(x)$ 在 $[0,+\infty)$ 上连续,给出以下三个命题:
(1) 若 $\int_0^{+\infty} f^2(x) \mathrm{d} x$ 收敛,则 $\int_0^{+\infty} f(x) \mathrm{d} x$ 收敛。
(2) 若存在 $p>1$ ,使得 $\lim _{x \rightarrow+\infty} x^p f(x)$ 存在,则 $\int_0^{+\infty} f(x) \mathrm{d} x$ 收敛.
(3) 若 $\int_0^{+\infty} f(x) \mathrm{d} x$ 收敛,则存在 $p>1$ ,使得 $\lim _{x \rightarrow+\infty} x^p f(x)$ 存在.其中真命题的个数为()
A. 0
B. 1
C. 2
D. 3