从 ①$(3 n-1) a_{n+1}=(3 n+2) a_n$, ② $a_2=5,2 a_{n+1}=a_n+a_{n+2}$ 这两个条件中任选一个, 补充在下面的问题中并 作答.
已知数列 $\left\{a_n\right\}$ 满足 $a_1=2$,
(1) 求 $\left\{a_n\right\}$ 的通项公式;
(2) 设 $b_n=\left(\frac{1}{2}\right)^{a_n}$, 求数列 $\left\{a_n+b_n\right\}$ 的前 $n$ 项和 $T_n$.
注: 若选两个条件分别作答, 则按第一个解答计分.
$\text{A.}$
$\text{B.}$
$\text{C.}$
$\text{D.}$