题号:14837    题型:解答题    来源:1991年全国硕士研究生招生统一考试数学试题及详细参考解答(数三)
设总体 $X$ 的概率密度为
$$
p(x, \lambda)=\left\{\begin{array}{cc}
\lambda a x^{a-1} e^{-\lambda x^a} & x>0 \\
0 & x \leq 0
\end{array}\right.
$$

其中 $\lambda>0$ 中是未知参数, $a>0$ 是已知常数. 试根据来自总体 $X$ 的简单随机样本 $X_1, X_2, \cdots, X_n$ ,求 $\lambda$ 的最大似然估计量 $\hat{\boldsymbol{\lambda}}$.
0 人点赞 纠错 ​ 9 次查看 ​ 我来讲解
答案:

解析:

答案与解析:
答案仅限会员可见 微信内自动登录手机登录微信扫码注册登录 点击我要 开通VIP