题号:14428    题型:解答题    来源:2024《无穷级数》同步训练
设 $f(x)= \begin{cases}x^2, & -1 \leq x \leq 0, \\ x-1,0 < x \leq 1,\end{cases}$
$$
a_n=\int_{-1}^1 f(x) \cos n \pi x \mathrm{~d} x, n=0,1,2, \cdots .
$$

求函数 $f(x)$ 对应的以周期为 2 的傅里叶级数在 $[-1,1]$ 上的和函数并求 $\sum_{n=0}^{\infty} a_n$ 和 $\sum_{n=0}^{\infty}(-1)^n a_n$.
0 人点赞 纠错 ​ 33 次查看 ​ 我来讲解
答案:

解析:

答案与解析:
答案仅限会员可见 微信内自动登录手机登录微信扫码注册登录 点击我要 开通VIP